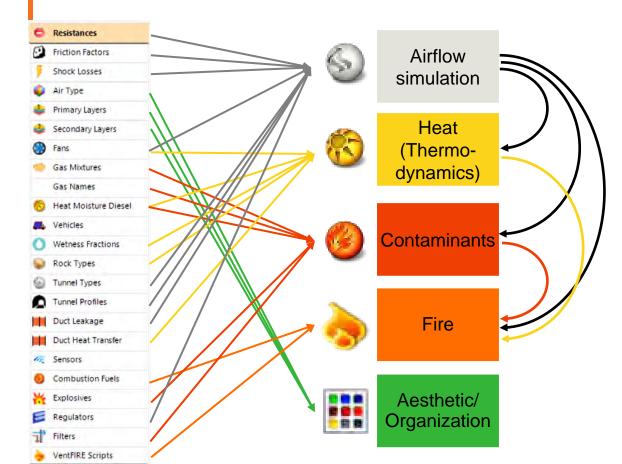


Establishing Site-Specific Preset Values in Ventsim

John Bowling, Principal Consultant (Mine Ventilation) Ventsim User Conference, Montreal, 26 Sep 2023 ***** srk consulting

Presets and Other Assumptions


Ventsim is a

excellent tool A complex, purpose-built calculator.

With a lot of underlying assumptions. And Presets.

Resistances Friction Factors		# in use (total all stages)	Friction Name	Friction Factor kg/m3	Roughness mm	Reference Density kg/m³	Comment		
Shock Losses		9	Custom						
Air Type		143 (145)	Auto						
Primary Layers	1	37 (334)	Flexible Duct	0.0029	0	1.2			
Secondary Layers	-	53 (56)		0.005	0	1.2			
Fans		32		0.0085	0	1.2			
Gas Mixtures	1	125 (126)		0.012	0	1,2			
Gas Names		13		0.015	0	1.2			
Heat Moisture Diesel		116 (117)		0.02	0	1.2			
Vehicles		2	Concrete Lined Airway		0	1.2		-	
Wetness Fractions	-	1		0.0417	0	1.2		-	
Rock Types		_	Timbered Airway	0.0333	U	1.2		-	
Tunnel Types	-	-		-	-				
Tunnel Profiles									
Duct Leakage									
Duct Heat Transfer									
Sensors									
Combustion Fuels									
Explosives									
Regulators									
Filters									

Presets – Which Matter and Why?

- The airflow simulation (resistance network) is the most basic component of Ventsim
- Airflow simulation forms the basis of other simulations
- For many mines the airflow simulation is sufficient

Model Review: Presets

I													5 Sho	ck Losses	+	716 (9323)	Custom		
C Resistances		# in use											— 🤪 Air 1	Type		408 (3918)	Auto		
Friction Factors		(total all stages)	Airway	Diameter m	Width m	Height m	Perimeter	m Area m²	Profile	Friction Factor Type	Min Velocity m/s	Max Velocity m/s	🕹 Prim	nary Layers			Smooth Blasted	0.0085	
Shock Losses		1194 (14032)	Custom		1			T	Square	~ Auto	~		🕹 Seco	ondary Layers			Average Blasted	0.012	
Air Type	-	191 (2321)	Main Ramp	5.5	5.5	6.05			Arched		~ 0	6.5	S Fans	5	1.1.1	3057 (33538)	Rough Blasted	0.015	
	-	212 (2311)	Main Ramp	1.000	6.05		A :				~ 0	6.5	-	Mixty		41 (472)	Very Rough Blaste	ed 0.02	
Primary Layers		1302 (14264)	Cross-cut	5.5	5.5	6.05	Airwa	ys hav	Arched		~ 0					4 (45)	Concrete Lined Air	way 0.0033	
Secondary Layers	- 1	1399 (15416)	Footwall Drift	5.5	5.5	5.5	oppro	nrioto	Arched	Y Rough Blast	Velc	ocity	-	Nam			Concrete Shaft Se	ts 0.0417	
Fans	_		Production Shaft	6	6	6	appro	priate	Round	V Concrete Li	~ 0		🚫 Hea	t Moisture Diesel			Timbered Airway	0.0333	
Gas Mixtures			575/760	0	0	0	dimon	sions,	Square	~ Auto	💵 limi	ts in	A Veh	icles		12 (113)	RaiseBored Airway	y 0.005	
Gas Names		24 (284)	Waste pass 785	3	3	3	unnen	510115,	Square	✓ Very Rough	~ 0		O Wet	tness Fractions		0 (2)	Rexible Duct - Ner	w 0.0037	
😚 Heat Moisture Diesel			Hurley Intake	2.41	2.41	2.41	frictio	n	Round		💵 ram	ps	. S Roc	k Types		0 (67)	Flex Duct - Used	0.0046	1
K Vehicles	1.0	2 (22)	Exhaust Raise	5	5	5		••	Round	✓ RaiseBored *	~ 0		- Gi Tuni	nel Types			Rigid Duct	0.0019	
Wetness Fractions	-	23 (265)	Man way	3	3	3	and the second second	1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1	Square	rivegri sideriti	~ 0	0		nel Profiles	-	404 (4646)	Ramp	0.0221	_
Rock Types	- 10.00	11 (122)	Adit Raises	-	5	5	3		Square		v 0	0	Duc			4 (55)	Shaft	0.0075	
Tunnel Types		1 (11)	South Portal 220 Raise	6	6	6		Z	Arched	V Ramp	~ 0 ~ 0	6 0 C Resis	tances	t Leakage	1	4 (55)	Juidir	10.0075	
	_	57 (611)	95L Ramp	5.5	5.5	5.5		<u></u>	Arched		~ 0				#in use	Air Type Nan	ne	Set	Colour
Tunnel Profiles	_	229 (2511)	95L Access	5	5	5	and the second	entre la companya de	Arched		~ 0	0 D Fricti	on Factors		4013 (43	Not Set			
Duct Leakage		ers (roil)	100000			3			710100	invoger biotetti			k Losses		333 (2439)	- A C 1 A C			
•	Resistances						NO	x CO Point	Bectric	1		🧉 Air T	ype					b	
9	Friction Facto	ors	Name			in use Utils otal all Fact	satior DPM Yie	ld Yield Diese	Vehicle	Point Point Sensible Latent		Prim.	ary Layers	_	262 (5795)				_
1	Shock Losses	5			झ	ages) Fact		te Rate Powe Whrg/kWhrhp	kW	kW kW					27 (126)	Leakage			
	Air Type	,	Conveyor Line	ar 350 w/m	386	1	P P	T. T		1		😆 Seco	ndary Layers		11 (80)	Pit Leak	age man		
	Primary Laye	rs	Crusher Station	n 500kW Electric		- He	at nr	esets -	hard	to		Fans				Manway Leak	ages		
	Secondary La		Diesel Truck 3	50kW @ 50%	1								C Res	sistances		#in		Lui a	0.4
		ijeis	Pump Station 3	300kW Electric 90	% effi	tra	ace (b	etter: ι	ISe				🕑 Fric	ction Factors		use (total all	Resistance Name	Resistance Ns²/m8	Density
	Fans	_	Refrigeration P		305								5 Sho	ock Losses		stages)	reatine	149 /100	kg/m ³
-	Gas Mixtures		45T [113.21/h		6	D	ower a	nd util	izatio	n) 35			Air	Туре		128 (755)	Blocked		1.2
	Gas Names		40T Truck [98		alle.		0.1 3.2	3.5		uz 313.2						5 (144)	Brattice	2.5	1.2
6	Heat Moistu	re Diesel	60T Truck [64		3.	1	0.1 9.2	3.5 0		70.1 348.6			😂 Prin	mary Layers					-
4	Vehicles		8 yd Scoop [70		1.	1	0.1 9.2	3.5 0		36.9 227.3			i Sec	condary Layers		84 (546)	Concrete Wall	1000	1.2
0	Wetness Frag	tions		Toyota (25% Utilisat	ion]	1	0.1 9.2	3.5 0		9.7 31			💮 Fan	15		32 (417)	Good Door	20	1.2
	Rock Types	1	11 yd Scoop [7		5*	1	0.1 9.2	3.5 0		52.5 235.4			Ga:	s Mixture		7 (96)	Good Seal	250	1.2
63	Tunnel Types			[30% Utilisation]	1	1	0.7 0.2	35 0		1.7 0			C.	s Nam		1 (16)	Leaky Door	5	1.2
0	Tunnel Profil	es		30% Utilisation)	and a	1	01	3.5 0		9.1 0			-			2 (12)	Poor Seal	50	1.2
	Duct Leakag			ing, 15% Utilisation	7(77) 1		35 0		14.2 59.4			Hei	at Moisture Diesel		0 (10)	Stockpile	1	1.2
	Duct Heat Tr			op [70% Utilisation]	010	1	0.1 9.2	3.5 0	-	39.4 124.6			🚑 Vet	hicles		0(1)	Raise 7 to 5	0.19288	1.2
		angiet		p [70% Utilisation]	alla	1	0.1 9.2	3.5 0	1	48.7 129.3			O We	tness Fractions		60 (529)	Muck High	1.5	1.2
	Sensors		New scoop	de fa sue compatibiti	alle		0.1 9.2	3.5 0		36.9 227.3			Roi	ck Types		3 (33)	Muck Low	0.5	1.2
	Combustion	Fuels	60T Iding [157	[Bilantina]	30	20) 1	0.1 9.2	3.5 0		57.8 83.1			100	nnel Types	-			0.0	
34	Explosives		our ionig[15/	outduon	S. 5 31	20)	0.1 9.2	3.4 0	V I	00.1			20 10	mer types		5 (50)	Muck Med		1.2

C Resistances

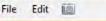
Friction Factors

O

in use (total

al stages)

716 (0323)


Friction Name

Custom

Friction Factor kg/m3

Preset: Resistances

Ventsim DESIGN Preset Values

Resistances

- Preset values are good for greenfield planning
- Provide the preset of the p
- X Majority of controls aren't just a "Steel Door" or "Concrete Wall"

# in use (total all stages)	Resistance Name	Resistance Ns²/m8	Reference Density kg/m³	Strength Rating kPa	Reversing Resistance (leave zero for default) Ns²/m8	Linear/100	No Thoroughfare	lcon	Comment
3	Blocked	80	1.2		80			R	
6	Blocked Drawpoint	25	1.2		0			R	
	FabricSeal	2.5	1.2		0			R	
1	HangFlaps	1.5	1.2		0			R	
13	MeshBrattice	4	1.2		Ó			B	
2	Full Pass	1000	1,2		0			B	
5	LoStockpile	0.05	1.2		0			R	
	Stockpile	0.15	1.2		0			R	
2	HiStockpile	0.8	1.2		0			R	
2	WoodDoor	5	1.2		0			R	
1	SteelDoor	20	1.2		0			R	
	Brattice	2.5	1.2		0			R	
	Concrete Wall	1000	1.2		0			B	
	Good Door	20	1.2		0			B	
	Good Seal	250	1.2		0			B	
	Leaky Door	5	1.2		0			8	1
	Poor Seal	50	1.2		0			R	

Typical Resistance Values for Ventilation Controls

- Doors:
- Seals:
- Curtains or Brattices:
- Bulkheads or Stoppings:

5-50 Ns²/m⁸ or P.U. (Typical 20) 1000-10,000 Ns²/m⁸ or P.U. (Typical 2,500) 1-5 Ns²/m⁸ or P.U. (Typical 2.5) 50-5,000 Ns²/m⁸ or P.U. (Typical 1,500) Note: 1 P.U. = 1.11 Ns²/m⁸

 Ventsim's Presets align well with observed average values

Preset Resistances: Ventilation Controls

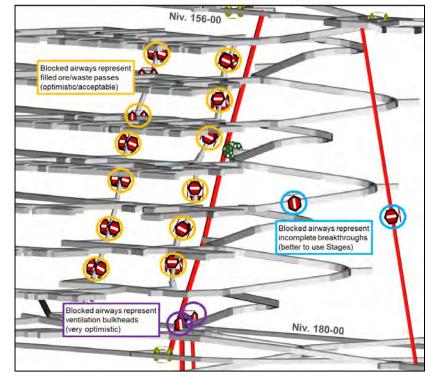
None of these controls easily fits into a Preset

"Good Door"?

"Leaky Door"?

Provide the preset of the p

"Leaky Seal"? "Brattice"? Or orifice? Regulator?


"Brattice"? "Leaky Seal"?

Blocked airways: infinite resistance

"Blocked" infinite resistances uses:

- Filled ore passes: even if leakage is negligible, better to include in model for orientation and modeling open OP effects
- X As bulkheads: some good bulkheads may start as very high resistance, but often deteriorate and leak as they age
- X To represent planned breakthroughs: effective but confusing; prefer either:
 - Exclude + Hide Excluded (F8 toggles)
 - Stages
- Brainstorming while in a live meeting, to make temporary/what-if changes. Go back and exclude or stage airways appropriately after the meeting

------------------------------srk consulting

Preset: Friction Factors

Duct Leakage

- Ventsim's Preset friction factors are from reliable references
- Excellent for desktop studies
- Often more variable in practice: function of ground support

	_						
Resistances		# in use (total	First Maria	Friction Factor	Roughness	Reference	c
Friction Factors		all stages)	Friction Name	kg/m3	mm	Density kg/m³	Comment
Shock Losses	•	9	Custom				
Air Type		143 (145)	Auto				
Primary Layers		37 (334)	Flexible Duct	0.0029	0	1.2	
Secondary Layers		53 (56)	RaiseBored Airway	0.005	0	1.2	
Fans		32	Smooth Blasted	0.0085	0	1.2	
Gas Mixtures	-	125 (126)	Average Blasted	0.012	0	1.2	
Gas Names	-	13	Rough Blasted	0.015	0	1.2	
		116 (117)	Very Rough Blasted	0.02	0	1.2	
Heat Moisture Diesel	1.1	2	Concrete Lined Airway	0.0033	0	1.2	
. Vehicles		1	Concrete Shaft Sets	0.0417	0	1.2	
Wetness Fractions	1.1		Timbered Airway	0.0333	0	1.2	
Rock Types							
Tunnel Types	-			1	1		-
Tunnel Profiles							

Raises and Escapeways

"Smooth Lined"

Timbered manway ~2.5m × 3m w/ full landings

Open/ divided manway >1/2 open, ~3.5m × 3.5m w/ open landings

Full Landin

Once It's Built: Custom Presets

										Resistances	
										Priction Factors	
# in use (total all stages)	Resistance Name	Resistance Ns²/m8	Reference Density kg/m ³	Strength Rating kPa	Reversing Resistance (leave zero for default) Ns²/m8	Linear/100	No Thoroughfare	lcon	Comment		
19 (128)	Blocked	80	1.2		60			X			
2	Poor Seal	50	1.2		0				assumes unse	aled timber wall	
1 (2)	Good Seal	250	1.2		0				assumes timbe	er wall sealed w/ curtain	
	Brattice	2.5	1.2		0			X	1		
1	Leaky Door	5	1.2		0			X			
3 (38)	Good Door	20	1.2		0						-
	Stope Backfilled	50	1.2		0			X	Backfilled Stop	be	
1 (6)	Heater	0.015	1.2		0			No. 1	Heater Resista	ance on sulface (measur	
12	B_Curtain	5	1.2		0				Curtain Resist	ance	-hi
4	Door w/ Regs (all open)	0.215	1.2		0			X	Door, louvers,	mandoors fully open	
21 (22)	Bulkhead w/ Man Door	50	1.2		0			X			
	B_Curtain Loose	0.5	1.2		0				curtain loosely	clipped to screen	
1	B_Fan Wall	250	1.2		0				Vent curtain o	vertimber wall, sealed	
1	FAR ladder bottom wall	0,011	1.2		0			S.	Shock loss an	ound ladder bottom	

Je Ventsim DESIGN Preset Values

ile Edit 🔟

lin use (total Il stages)	Friction Name	Friction Factor kx10^10	Roughness	Reference Density Ib/ft ¹	Comment
8 (119)	Custom				
38 (554)	Auto				
(10)	RaiseBored Airway	26.954	0	0.07491601	
03 (744)	Rough Blasted	80.86199	0	0.07491601	
(9)	Very Rough Blasted	107.816	0	0.07491601	
42 (847)	Mine Ramps Upper	54.00002	0	0.07491601	16.0 w X 14.5 h
(4)	Escapeway Raises	270	0	0.07491601	varies
(19)	Mine Ramps 16.6 X 14.1	66.99998	0	0.07491601	16.6 w X 14.1 h
7 (84)	Mine Ramps Lower	97	0	0.07491601	17.5 w X 16.2 h
(68 ERegulators			-	- a ×	18.6 w X 15.6 h
3 (10 Re	alitor Name Drop-Board Regulator			OXT	17.9 w X 18.0 h
	aning time 0.0 🗢 seconds	100000	Fiting relation 0.0		Est. for Escapewa
Openi 0.0	ng %. Resistance Nakins 55.00000	91/JN 0.100-			
1.0	25.00000	§ 0.100-			
3.0	3.60000 2.66000				
15.0	0.33000	0.010-			
18.0	0.22000				
100.0	0.00060	0.001-			
		0.000 - 20	40 60	30 100	

But how?

With a few simple measurements

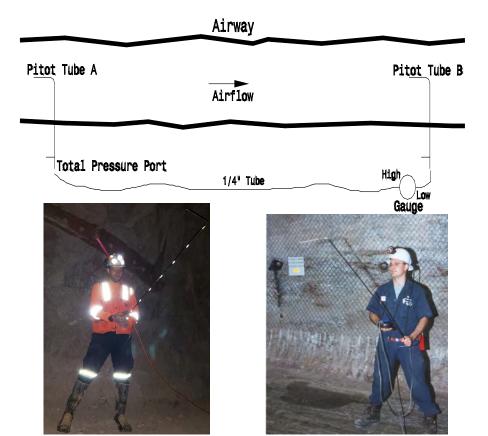
Ventilation PQ Survey: Q = Airflow

Measure velocity (full section)

- Full section traverse w/ anemometer, time scales with area (typic. 1 min)
- Grid method: divide into points by geometry (rectangular or circular)
- Select instrument appropriate for velocity (smoke tube, vane or hotwire anemometer, pitot tube)

Measure cross-sectional area

- Drift: average 2 widths and 3 heights
- Duct: note diameter (and annulus)


Ventilation PQ Survey: P = Pressure Pressure loss in airways or controls

Gauge-and-tube method

- Micromanometer, Pitot tubes, nylon tubing (up to 1000 ft/ 330 m)
- Measure static pressure drop across controls: doors, bulkheads
- Measure <u>total</u> pressure drop along main airways

Ventilation PQ Survey: P = Pressure Pressure loss in raises/shafts

Gauge-and-Tube method

 Direct measurement possible when accessible, practical (<~ 600m or 2000ft)

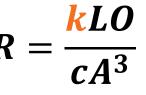
Barometer/altimeter method

- Leap Frog or Roving method
- Record time, barometric pressure, dry bulb temp, wet bulb or RH, air velocity, and elevation at each station
- Preferable to conduct while weather (atmospheric pressure) stable
- Requires additional data and calculation

For barometer method: ≥ 2 precision barometers (base station + roving) Anemometer RH/temp meter

Square Law and Atkinson's Equation

"Square
$$p=RQ^2$$
 or $R=rac{p}{Q^2}$


Where: R = resistance (Ns²/m⁸ or Practical Unit [P.U.]) p = frictional pressure drop (Pa or 10⁻³ in.w.g.)

 $Q = airflow (m^3/s \text{ or } kcfm)$

- Note: P.U. = 10⁻³ in.w.g./kcfm² = 1.117 Ns²/m⁸
 - Combine both the Square Law and Atkinson's Equation and solve, e.g.

$$R = \frac{p}{Q^2} = \frac{kLO}{cA^3} \longrightarrow k = \frac{p(cA^3)}{Q^2LO}$$

Atkinson's Equation

- Where: k = (Atkinson) friction factor, function of air density $(kg/m^3 \text{ or } lb_f \cdot min^2/ft^4 \times 10^{-10})$
 - L = length of airway (m or ft)
 - O = airway perimeter (m or ft)
 - A = airway cross-sectional area (m^2 or ft^2)
 - c = 1 in S.I. or 52 in Imperial Units

Ventilation Control Resistances: Calculating from Field Measurements

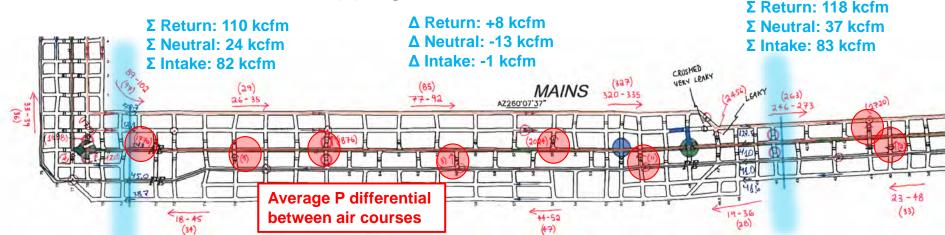
 Use PQ data from vent controls

Resistances

- Group and average similar controls, e.g., doors, walls
- Goal: representative values for future planning

# in use (total all stages)	Resistance Name	Resistance Ns²/m8	Reference Density kg/m³	Strength Rating kPa	Reversing Resistance (leave zero for default) Ns²/m8	Linear/100	No Thoroughfare	lcon	Comment
19 (128)	Blocked	80	1.2		00			B	
2	Poor Seal	50	1.2		0				assumes unsealed timber wall
1 (2)	Good Seal	250	1.2		0		V	-	assumes timber wall sealed w/ curtain
	Brattice	2.5	1.2		0			B	
1	Leaky Door	5	1.2		0			X	
3 (38)	Good Door	20	1.2		0				
	Stope Backfilled	50	1.2		0			B	Backfilled Stope
1 (6)	Heater	0.015	1.2		0			1	Heater Resistance on surface (measur
12	B_Curtain	5	1.2		0				Curtain Resistance
	Door w/ Regs (all open)	0.215	1.2		0			B	Door, louvers, mandoors fully open
21 (22)	Bulkhead w/ Man Door	50	1.2		0			B	
	B_Curtain Loose	0.5	1.2		0				curtain loosely clipped to screen
1	B_Fan Wall	250	1.2		0				Vent curtain over timber wall, sealed
1	FAR ladder bottom wall	0.011	1.2		0			Ŧ	Shock loss around ladder bottom
	Densitu*	Airflow	Drocour		D (ata				

Location	Description	Density* (kg/m³)	Airflow (m³/s)	Pressure (Pa)		R (std) (Ns²/m²)
FAR collar	Heater house	1.17	169.0	93	0.01075	0.01102
405L ramp	Door w/ reg (open door, regs, mandoor)	1.25	99.4	5	0.20000	0.19139
405L ramp	Door w/ reg (open door, regs, mandoor)	1.25	99.4	4	0.25000	0.23924
255L FA transfer	Shock loss around bottom of ladderway	1.24	178.0	89	0.01124	0.01086



Ventilation Control Resistances: Parallel Stoppings or Curtains

Use PQ data from schematic:

- Estimate Q leakage and count controls (e.g., 8 kcfm over 22 stoppings)
- Group and average stoppings of similar condition and construction
- Goal: representative values for future planning

Measure P across stoppings

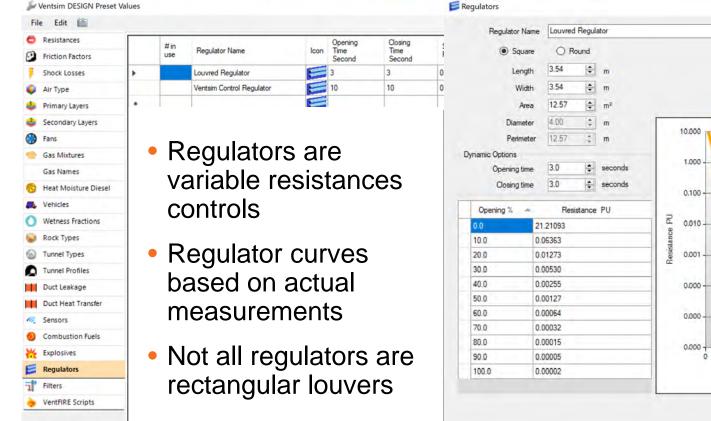
Friction Factors: Calculating from Field Measurements

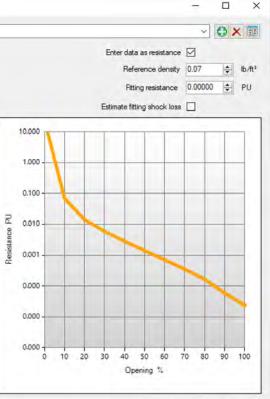
 Goal: average, representative friction factor for future ventilation planning

Friction F

 Group by development type/ ground support/ rock type, etc.

Location

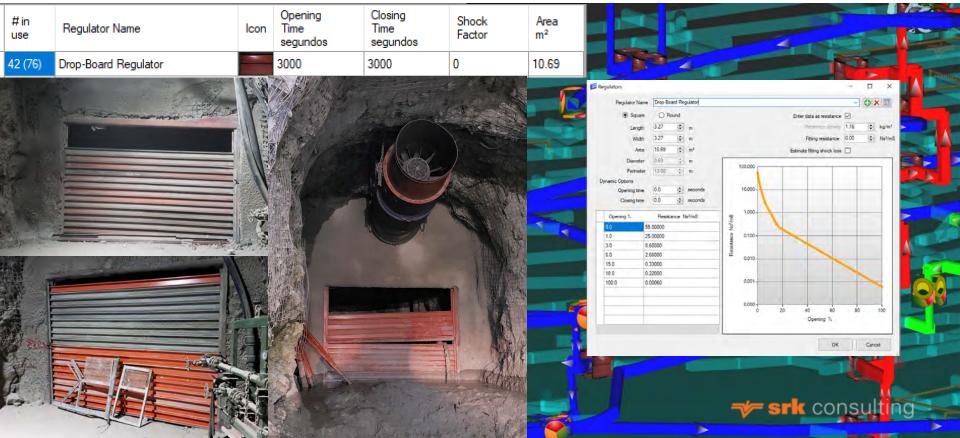

480 Ramp 29 Ramp 2853 Ramp 2950 Ramp 48 Ramp 45 Ramp 31 Ramp 920 Level


1350 Level (Slashed) Escapeway Safescape Tube

8 foot raise

	4	- 1		First F .		D. I	Reference			
rs	# in use (total all stages)	Friction Na	me	 Friction Factor kx10^10 	DF.	Roughness in	Density Ib/ft ³	Comment		
	58 (119)	Custom								
	438 (554)	Auto								
ction	11 (30)	1350 Level	(Slashed)	46		0	0.07491601	16.6 w X 17.1 h		
	13 (105)	29 Ramp		51		0	0.07491601	17.9 w X 18.0 h		
	1 (2)	3.5ft diam. F	3.5ft diam. Plastic Escape Tube		8.000001		0.07491601			
ig	1 (2)	4ft diam. Ra	ises	54.00002	54.00002		0.07491601	Est. for Escapeways	с I.	
	11 (31)	8ft diam. Ra	ises	27		0	0.07491601			
oment	28 (68)	920 Level	920 Level		52		0.07491601	18.6 w X 15.6 h		
oort/	2 (4)	Escapeway	Raises	270		0	0.07491601	varies		
	9 (19)	Mine Ramps	s 16.6 X 14.1	66.99998		0	0.07491601	16.6 w X 14.1 h		
	27 (84)	Mine Ramps	s Lower	97		0	0.07491601	17.5 w X 16.2 h		
Pressure (milli in. w.g.)	Aiflow (kcfm)	Length (ft)	Area (ft ²) Pe	rimeter (ft)	Density (lbs/ft ³)	Resistance (P.U.)	R/L (P.U./ 1000 ft	k (lbf min²/) ft ⁴ x10 ⁻¹⁰)	Standard k (Ibf min ² / ft ⁴ x10 ⁻¹⁰)	
253	156.8	4787.0	282.1	65.7	0.0740	0.01029	0.0021	38	38	
186	113.5	4955.0	306.5	70.0	0.0700			62	58	
-								-	75	
									86	
	-			-				-	56	
								-	30	
									34	
									14 62	
									-	
									925 36	
	ction ng oment oort/ Pressure (milli in. w.g.) 253	Section 58 (119) 438 (554) 11 (30) 13 (105) 13 (105) ng 1 (2) ng 1 (2) ng 1 (2) noment 28 (68) 2 (4) 9 (19) 27 (84) 27 (84) Pressure (milli in. w.g.) Aiflow (kcfm) 253 156.8 186 113.5 294 87.0 1268 193.8 308 127.5 119 125.8 62 75.1 190 280.0 378 195.5 273 1.8	Image: sign sign sign sign sign sign sign sign	Image: sign sign sign sign sign sign sign sign	rs all stages) Priction Name kx10^10 58 (119) Custom 438 (554) Auto 11 (30) 1350 Level (Slashed) 46 13 (105) 29 Ramp 51 1 (2) 3.5ft diam. Plastic Escape Tube 8.000001 1 (2) 4ft diam. Raises 54.00002 11 (31) 8ft diam. Raises 27 28 (68) 920 Level 52 2 (4) Escapeway Raises 270 9 (19) Mine Ramps 16.6 X 14.1 66.9998 27 (84) Mine Ramps Lower 97 Pressure (milli in. w.g.) Aiflow in. w.g.) Aiflow (kcfm) Length (ft) Area (ft2) Perimeter (ft) 253 156.8 4787.0 282.1 65.7 186 113.5 4955.0 306.5 70.0 294 87.0 4312.0 217.5 61.0 1268 193.8 3184.0 217.5 64.3 308 127.5 2636.0 205.6 57.4 119 125.8 2766.0 238.2 61.9	Image: sign bit is all stages Finction Name kx10^10 68 (119) Custom Image: sign bit is sign bit	Image Image kx10°10 in 68 (119) Custom in in 438 (554) Auto 1 10 1 11 (30) 1350 Level (Slashed) 46 0 0 13 (105) 29 Ramp 51 0 0 12(2) 3.5ft diam. Plastic Escape Tube 8.000001 0 0 12(2) 4ft diam. Raises 54.00002 0 0 11 (31) 8ft diam. Raises 27 0 0 28 (68) 920 Level 52 0 0 24(4) Escapeway Raises 270 0 0 9 (19) Mine Ramps 16.6 X 14.1 66.99998 0 0 27 (84) Mine Ramps Lower 97 0 0 186 113.5 4955.0 306.5 70.0 0.01029 186 113.5 4955.0 306.5 70.0 0.0710 0.03876 294 87.0 283.2 61.9 0.074	Image (c) and and stages) Friction Name Image (c) (1) (1) Polymess (c) (1) (1) Polymess (c) (1) (1) Polymess (c) (1) (1) Density (c) (1) Ction 58 (119) Custom ////////////////////////////////////	Image of the sequence	

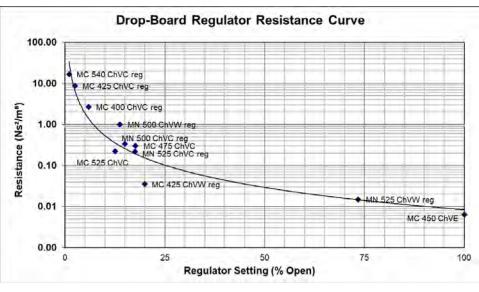
Presets: Regulators

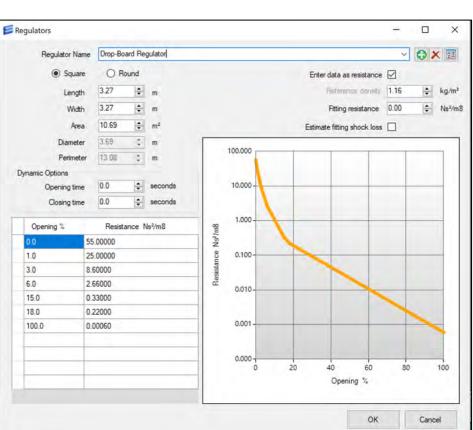


OK

Cancel

Custom Regulators Example: Drop-Board Regulator

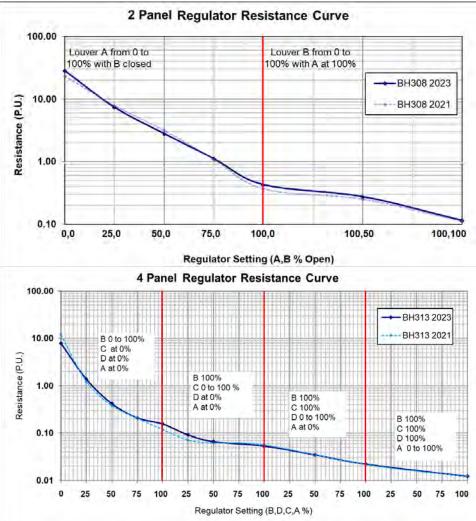

Measuring Regulator Resistances: Example: Drop-Board Regulator


- Curve: Resistance vs. % Open
- R: need P and Q for each setting
- % Open from PLC, area, number of logs, etc.

	Bars	Percent	Percent	Airflow	Pressure	Resistance
Location	open	open	open	(kcfm)	(m.in.w.g.)	(Ns/m³)
MC 540 ChVC reg	0.2	1%	1.0	7.0	730	16.6410
MC 425 ChVC reg	0.5	3%	2.5	3.0	69	8.6136
MC 400 ChVC reg	1	6%	5.9	5.5	71	2.6680
MC 525 ChVC	2.5	13%	12.5	56.2	630	0.2230
MN 500 ChVW reg	2	14%	13.7	6.7	40	0.9965
MN 500 ChVC reg	3	15%	15.0	13.9	58	0.3364
MN 525 ChVC reg	3.5	18%	17.5	26.3	134	0.2159
MC 475 ChVC	3	18%	17.6	30.1	243	0.3004
MC 425 ChVW reg	4	20%	20.0	16.9	9	0.0352
MN 525 ChVW reg	(area)	73%	73.4	19.4	5	0.0148
Total bars in frame	20					

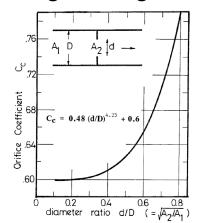
Measuring Regulator Resistances: Example: Drop-Board Regulator

- Enter as Resistance vs. % Open
- % Open is any meaningful value: actuator control value, number of handle turns, area, etc.



Multiple-Louver Regulators

- Sometimes regulators consist of multiple louvers in banks
- Can be combined into single curve

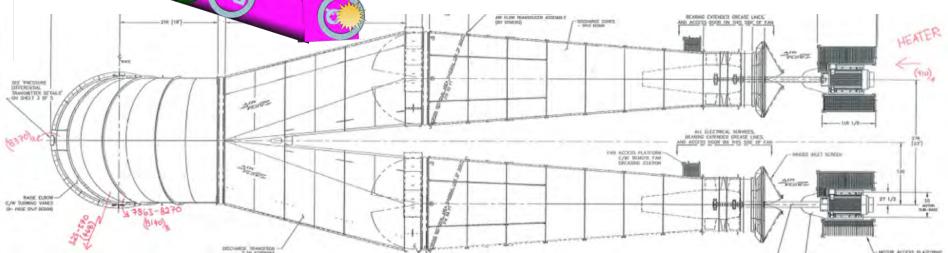

Why a Regulator? Why not use Orifice?

~

- H

Attributes	
 Resistance (Ns²/m8) 	40.26999 (Orifice)
Resistance Type	Orifice
Orifice Area (m ²)	0.2
Adjusted to local density	
> Friction Factor (kg/m ³)	0.0122 (Ramp (avg))
> Shock X	0.00 (Nil)

 Orifice area calculator does not match the regulator geometry


	_		
	Attributes		~
	 Resistance (Ns²/m8) 	4.64000 (Regulator)	
	Resistance Type	Regulator	- <i>Si</i>
	Regulator	Drop-Board Regulator	- Sr
	Opening (%)	5.0	
	Adjusted to local density		
	> Friction Factor (kg/m ³)	0.0122 (Ramp (avg))	
	> Shock X	0.00 (Nil)	
	 each open s Auto-Regu needs Regu 	0	
	Attributes		~
	 Resistance (Ns²/m8) 	0.10644 (Auto-Regulator	.)
	Resistance Type	Auto-Regulator	- <i>S</i> i
Ĩ	Auto-Regulator Type	Drop-Board Regulator	- <i>S</i> r
	Target Flow (kcfm)	20.0	
	Opening (%)	60.4	
	Adjusted to local density		
2	> Friction Factor (kg/m ³)	0.0122 (Ramp (avg))	

Shock X

0.00 (Nil)

When Presets Don't Fit PQ Survey input • PQ survey

- PQ survey: any vent control
- Useful for unique permanent controls:
 Headframes
 - neadirar – Ducts
 - Transitions
- Remember: measured at local density

PQ Survey input

AR LEAKY HEADERAME 1670 FROM SOUTH

Example: PQ survey for a headframe:

- **P** from differential across headframe this depends on fans, open doors, etc.!
- **Q** measured UG, at shaft collar, or leakage between fan (pitot) and UG

Close End	
Show Data	
Exclude	Y
Fix Direction	
Group	
Fix Length	
Length (m)	15.1
Gradient (%)	48870.5
Diffuser	
Attributes	
 Resistance (Ns²/m8) 	0.16959 (PQ Survey)
Resistance Type	PQ Survey
Pressure (Pa)	590.3
Quantity (m ³ /s)	59.0
Linear Survey	
Adjusted to local density	
> Friction Factor (kg/m ³)	0.0121 (Custom)
> Shock X	0.00 (Custom)
Simulation	
Q (m³/s)	113.0
V (m/s)	3.0
P Loss (Pa)	386.4
R (Ns²/m8)	0.16959

Conclusions

- Ventsim's Presets are assumptions (check yours!)
 - Based on literature, great for desktop studies
 - May NOT match your installed controls, but YOU can measure your own
- Where to measure?
 - Representative controls (think future planning: will you build 2 more? 200 more?)
 - Regulators: variety of setpoints (include or estimate "0% open")
 - Important unique controls: prioritize by high Air Power Loss (~airflow × pressure drop)

Tips for Using Custom Presets

- Measure P and Q at the same time
- Convert measured values to standard air density
- Regulators: measure a variety of setpoints (include "0% open")
- Take photos! Use them for Preset Resistances and unique controls
- Be creative! Many values can be measured indirectly
- Estimate leakages by parallel combination if possible
- Headframes: note season (open in summer, closed in winter?)
- Drop raises or multi-stage raises: do they include shock losses? (if so, don't double-count)
- Use *File > Inherit* to copy Presets between models

