

Ducting parameters update and duct-fan system design guidelines for better auxiliary fan selection

Myriam Francoeur | Mining Sales Manager – Canada, TLT-Turbo North America

Presentation summary

- Duct-fan system design practice overview
- Review of basic Ventsim duct-fan system simulation parameters
- Shock losses
- Duct-fan system reliability simulations
- Conclusion

Duct-fan system design practice overview

- On average, duct-fan systems represent 20-25% of an underground mine's total power consumption
 - Including the fuel consumption of underground mobile equipment, and natural gas/propane for heating in winter-laden countries
- We tend to rely on rules of thumb to design duct-fan systems
 - For example, in North America, we like to design systems based on their fan diameter and motor rating, expecting a given face airflow
 - We use presets in Ventsim

Duct-fan system design practice overview

- Airflow loss rate (percentage) per 100 m inaccurately represents leakage
 - Leakage is higher in areas of high static pressure and decreases with lower static pressures, i.e., it is higher near the system's inlet
 - The total leakage profile is rarely linear
 - But the % of losses per 100 m is incompatible with Ventsim!
- We tend to omit shock losses

Airflow profile in a duct-fan system with varying ducting junction leakage

Basic Ventsim duct-fan system simulation parameters

Vent Duct 603.0 m \times **Diameter (ideally** 1.22 🜩 m Leakage porosity the hydraulic Diameter (open surface in mm² diameter) 0.00200 🖨 kg/m³ Friction Factor Custom \sim per m² where air 75 🚔 mm2/m2 Leakage Porosity Custom \sim can leak) Air Type Fresh \sim Duct Heat Transfer High Density Polyethy ~ **Friction factor** Duct Profile Round \sim 0.007 Thickness m Thermal Conductivity 0.48 W/mC Leakage R/100 2.017.0 R/100m Leakage intervals 2.4 🜩 m Leakage Intervals (spacing between 0.0 🜩 m Offset Horizontal two ducting junctions) 5.0 🜩 m Offset Vertical Simulate Remove Convert Close Build Duct 5 1

Basic Ventsim duct-fan system simulation parameters

Friction factor

• Confirm friction factor values with peers (or check the table below for guidance)

Ducting type	Typical k factor (kg/m ³)
Layflat (vent bag)	0.0037
Spiral	0.0100
Steel	0.0025
Thermoplastic	0.0020

Fan: TLT-Turbo MC1200AP-1S[665H12B-4P60]

Standard air density

Leakage intervals: 2.5 m

Leakage porosity: 75 mm²/m²

Length: 275 m

Basic Ventsim duct-fan system simulation parameters

Leakage porosity

- We can guesstimate leakage porosities by simulating an existing system and achieving the same outlet airflow
- There is no data reflecting leakage porosity
- Leakage porosities in Ventsim do not always accurately describe U/G mining installations

Ducting type	Typical leakage porosity (mm²/m²)
Layflat (vent bag)	120 (tentative)
Spiral	?
Steel	?
Thermoplastic	75

Fan: TLT-Turbo MC1200AP-1S[665H12B-4P60]

Standard air density

Leakage intervals: 2.5 m

 $k = 0.002 \text{ kg/m}^3$

Length: 275 m

Shock losses

• Shock losses must be added manually (except the exit shock loss)

•
$$p_X = X \frac{\rho u^2}{2} = X \rho \frac{Q^2}{A^2} = X \frac{16\rho}{\pi^2} \frac{Q^2}{d^4}$$

- Air velocities range from 20 m/s to over 30 m/s in duct-fan systems!
- Generally, the most significant shock losses occur in the first third of the system (and at the system outlet)

Shock losses

Most common shock losses

Shock loss source	Shock loss factor
Screen	See graph 1
Inlet bell	0.05
Converging transition (45°)	$X = 0.33(1 - A_2/A_1)$
Sharp contraction	$X = 0.50(1 - A_2/A_1)$
Silencer (full-flow)	0.1
Silencer (podded)	0.75
Evase, diffuser, enlarging transition	0.29* (TLT-Turbo)
Sharp expansion	$X = (A_2/A_1-1)^2$
Bend	See graph 2 & 3
Damper	Variable**
Exit	1

* TLT-Turbo Fan Advisor ** De Souza (Auxiliary Mine Ventilation Manual)

Duct-fan system reliability simulations

- Development ventilation frequently relies on long duct-fan systems (600+ m) that can operate for 12-18 months
- Power requirements can exceed 500 kW and reach up to 1 MW
- These duct-fan systems are subjected to damages that influence their reliability
- Damage can increase the total system leakage by up to 5 times
- Friction factor can increase because of ducting damage (kinks, undesirable bends)

Duct-fan system reliability simulations

Run independent duct-fan system simulations!

- Increase the leakage porosity incrementally by 10% and up to 50%
- Increase the friction factor between 10% and 30%
- Add shock losses in critical areas, not just where they are expected
 - Ducting is particularly vulnerable in crosscuts, especially if it intersects with services
- Verify if the initial fan selection is still suitable or change accordingly
 - Avoid stall conditions
 - Ensure sufficient airflow is delivered to the face
- Confirm that the duct-fan system power requirements are still within the mine's capacity

Duct-fan system reliability simulations

Conclusions

Conclusions

- Pay attention when performing duct-fan system simulations!
 - Underestimating leakage parameters impacts and omitting shock losses → more airflow at the face in the simulation than in the operating system
- The auxiliary fan output and selection depend on the result of the duct-fan system simulations
 - In the case of an underperforming duct-fan system, we must review operations, or we add fans to the system, increasing its power requirements
- It is good practice to run reliability simulations, especially for long duct-fan systems
 - Ensure a proper fan selection to avoid nasty surprises!